Wetland water budgets developed using actual weather and soils data can be used to evaluate the hydrologic effects of filling irrigation reuse pits in the upland areas of playa basins.
What’s a PIT?

Tailwater Recovery System
How Many PITs?

2008 Inventory

- 65% of the RWB is being irrigated
- 10,217 pits
Where’s the PITs?
Where’s the PITs?
Upland Pit Fill
“Watershed Initiative”

Wildlife Benefit:
Filling pits would provide 5.6 acre feet of water to a watershed and flood 9 to 15 acres of wetland habitat in the spring.

Production Benefit:
Additional farmable acres and eliminates an obstacle in the field.
Upland Pit Fill
“Watershed Initiative”

Projects based on:
1. Ratio of pit volume to wetland volume.
2. Proximity of the pit to the wetland.
Upland Pit Fill Hydrologic Impact

Using Wetland Water Budgets:

1. Develop a field tool identifying the effectiveness of the pits.
2. Quantify the net impact of filling pits on the actual wetland playa.
Clark Pit Fill Initiative

SPAW – Soil Plant Air Water

- Rainfall (30-yrs Daily)
- ET (TR-34)
- Interception (Chow)
- Infiltration (WSS)
- Runoff (SCS CN)
- Deep Percolation
SPAW – Soil Plant Air Water

Field
Assumptions:
- LiDAR Topography
- No Channel Routing
DAILY SPAW Information

- Precipitation
- Inflow
- Depth
INDIVIDUAL PIT EVALUATION

Runoff Retained % vs. Size of Pit

Where \(\% = (\text{Inflow} - \text{Spillway}) / \text{Inflow} \times 100\% \)

![Plot showing Runoff Retained Percentage vs. Size of Pit](image)
INDIVIDUAL PIT EVALUATION

Runoff Retained Vol vs. Size of Pit

Runoff Retained vs. Size of Pit

Size of Pit (ac-ft)

Runoff Retained (ac-ft)

Pit 1
Pit 2
Pit 3
Pit 4
Pit 5
Pit 6
Pit 7
Pit 8
Pit 9
Pit 10
INDIVIDUAL PIT EVALUATION

Runoff Total vs. Drainage Area

Drainage Area vs. Total Runoff

- Pit 1
- Pit 2
- Pit 3
- Pit 4
- Pit 5
- Pit 6
- Pit 7
- Pit 8
- Pit 9
- Pit 10
INDIVIDUAL PIT EVALUATION

Size of Pit vs. Drainage Area

Size of Pit vs. Drainage Area (ac-ft)

Drainage Area (ac)
INTERPRETING DATA

RESULTS:
1. The ten pits combine annually to retain an average of 24.56 ac-ft of water or 6.8% of total runoff.
2. Pits 1, 2, 3, and 7 combined to account for 56.4% of the retained water.
3. Pit 10, third largest DA, pit volume is the smallest, only accounts for 5.3% of the water retained.
4. Pits 4 and 6 have the fifth largest pit volumes yet because of their small drainage areas only account for 8% respectively of the retained water.
CONCLUSION: A pit with a large drainage area and a large pit volume will retain more water.

Size of Pit vs. Drainage Area

- Pit 1
- Pit 2
- Pit 3
- Pit 4
- Pit 5
- Pit 6
- Pit 7
- Pit 8
- Pit 9
- Pit 10
Using Wetland Water Budgets:

1. Need more data
 For now, model each watershed

2. Quantify the net impact of filling pits using wetland inundation and duration.
Upland Pit Fill Hydrologic Impact

Compare inundation depths (7 consecutive days) during the average year **BEFORE & AFTER FILLING PITS**.

- Wetland Size grew from 53 ac to 76 ac (24 ac)
- Inundation depth increased 3.6 inches
Upland Pit Fill
“Watershed Initiative”

Summary:

1. A pit with a large drainage area and a large pit volume is best candidate for filling.
2. Site-specific modeling is necessary.
3. Pit-fills can have an impact on restoring wetland hydrology.
Upland Pit Fill
“Watershed Initiative”

Next Steps:
1. Additional SPAW models using survey
2. Adjust ranking criteria to include pit drainage area, pit size and proximity
3. Cost/Benefit of filling pits based on proximity and location of borrow.
Pit-Fill Decision Model

References

Richard D. Wilson; Evaluating Hydroperiod Response in the Rainwater Basin Wetlands of South-Central Nebraska

Rex Robichaux, Lisa M.B. Harrington; Env Conditions, irrigation reuse pits, and the need for restoration in the RWB wetland complex, Nebraska

Ele Nugent, Why We Pay to Increase Farm Acres: The Rainwater Basin Joint Venture Watershed Initiative