Rain Water Basin Soils – Development, Morphology, and sedimentation tactics

Neil Dominy
State Soil Scientist
Lincoln, Nebraska
www.ne.nrcs.usda.gov
Neil.Dominy@usda.gov

USDA is an equal opportunity provider and employer.
1) Vocabulary and

2) Fundamentals...
 1) Soil Forming Factors
 2) Soil Properties
 3) Soil Morphology
 4) Soil Horizons
 5) Rain Water Basin Geomorphology
Soil = $F(\text{Cl}, \text{O}, \text{R}, \text{P}, \text{T}, \ldots)$

Hans Jenny, 1941
Climate:
Precipitation & Temperature

Figure 4.3. Mean annual total precipitation, illustrating the gradient of moisture from lower in the western Great Plains to higher in the east. (From Bryson and Hare [1974], with permission of Elsevier)
Organisms

- Vegetation...
- Grazers...
- Burrowers; from ants to badgers...
- Microbes and fungi...
Relief & Aspect (Microclimate)

Upper Mississippi River valley near Red Wing Minnesota
Parent Materials

NE Parent Materials
Need a period of stability to form a soil!

On a regional scale and in geological time, the last (Wisconsinan) glacial period that ended ~ 10,000 ybp was a time of landscape instability.
Time: Don’t forget, distinguish between age of parent material and age of the soil!

- **Bedrock**: 3MYA, 100-70 MYA
- **Glacial till in eastern Nebraska**: ~ 500,000 ybp
- **Loess deposits in Nebraska**
 - Loveland: 130,000 ybp, Illinoian Glaciation
 - Gilman Canyon: 27,000-22,000 ybp
 - Peoria: 22,000-12,000 ybp
 - Bignell: < 9000 ybp
- **Aeolian sand**: Widespread activity 700-800 ybp
- **Alluvium and Colluvium**: Much is Post-settlement
What are the “…” factors?
Soil Properties: *Strongly influenced by parent materials*

Texture

![Texture Triangle](image)
Soil Structure
Describing soils: Soil Morphology

- Texture
- Color
- Structure
- Mottling
- Skeletal fragments
- Consistence
- Reaction (pH)
- Horizons
Soil Horizons

- A
- B
- C
- E

Modifiers
- p
- t
- g
- c
- w
- Vegetative litter
- Brown colors from decomposing organic matter
- Clay % increases and structure develops as clays move downward and weathering occurs when there is excess precipitation and soil wets-dries & freezes-thaws, producing soil structure.
- “Parent material”
- Plowed (disturbed) or High clay
Soil Genesis Cont.

- g
 - Gleyed (wet)
- c
 - Carbonate concentrations
- w
 - Some development in the B horizon
Holdrege Soil Profile
Surface layer: dark grayish brown silt loam
Subsoil - upper: dark grayish brown silty clay loam
Subsoil - middle: light brownish gray silty clay loam
Subsoil - lower: light gray silt loam
- Hastings – Upland
- Butler – Near upland
- Fillmore – SWP drained
- Scott – P drained
- Massie VP or P drained
 - BT depths – landscape scale
 - E horizon development
 - Variability between counties
Rain Water Basin Catena
Playa Hydrology – Aquifer Recharge
Basin Origin

- The wetlands were primarily formed by wind action and generally the long axis of the basin runs in a northeast to southwest orientation (Kuzila and Lewis 1993).
- There frequently is a hill (lunette) located immediately south or southeast of the wetland where the windblown loess was deposited.
- Big Nell (Holocene recent 1000 ybp) – Peorian (14,000 ybp) – Gilman Canyon (20k ybp) – Loveland loess (35 ybp) – Sand and gravels (42 YBP)
Clay County Map Sheets 32 & 37
Findings from Kuzila

- Particle size and mineralogic data indicated the possibility of a lithologic discontinuity at a depth of approximately 60 cm in all of the pedons studied.

- Stratigraphic data indicated that eight to twenty-eight feet of loess, covered old landscapes that were marked by buried paleosols dating from 19,890 to 26,670 years before present.

- The soil parent materials above the paleosols were identified as Peoria and Bignell loesses
 - Kuzila, Mark Steven, "Genesis and morphology of soils in and around large depressions in Clay County, Nebraska" (1988). ETD collection for University of Nebraska - Lincoln
Work locations for Kuzila findings
Rainwater Basin stratigraphy

Mark Kuzila
RWB formation

- Sand is beneath the loess
- Old braided river (Platte?) channel
- Depressions formed in the sand
- Sand rims formed on east and south
- Several loess deposits drape pre-existing depressions
- Age?
 - Gilman Canyon soil < 20,000-25,000 ybp
OSL ages, sand below surficial loess

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth(^1) (m)</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZ-1</td>
<td>3.7</td>
<td>35.9±3.6</td>
</tr>
<tr>
<td>BZ-2</td>
<td>4.2</td>
<td>64.5±3.4</td>
</tr>
<tr>
<td>BZ-3</td>
<td>4.4</td>
<td>71.9±6.2</td>
</tr>
<tr>
<td>BZ-5</td>
<td>2.5</td>
<td>45.1±2.3</td>
</tr>
<tr>
<td>BZ-7</td>
<td>3.3</td>
<td>59.0±4.3</td>
</tr>
</tbody>
</table>

\(^1\)Depth of sample below current land surface.
Conservation & Survey Division
Field Tactics

<table>
<thead>
<tr>
<th>Stop #</th>
<th>HOR</th>
<th>DEPTH</th>
<th>COLOR</th>
<th>TEX/frag</th>
<th>Component Name</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ap</td>
<td>8"</td>
<td>10YR 2/1</td>
<td>SIL</td>
<td>Crete</td>
<td>Thick A horizon - likely due to years of vegetative cover. Had a small area of transition (1") but not a full BA horizon, as is typic.</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>16"</td>
<td>10YR 2/1</td>
<td>SILC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt 1</td>
<td>16"+</td>
<td>10YR 3/3</td>
<td>SIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ap</td>
<td>4"</td>
<td>10YR 2/1</td>
<td>SIL</td>
<td>Crete</td>
<td>A - MIXED with fill AB - some fill mixing</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>15"</td>
<td>Mixed</td>
<td>Fill SIL - SICL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>19"</td>
<td>10YR 2/2</td>
<td>SICL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt 1</td>
<td>28"</td>
<td>10YR 3/3</td>
<td>SIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt 2</td>
<td>30"</td>
<td>10YR 4/2</td>
<td>SIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>30+"</td>
<td>SICL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ap</td>
<td>5"</td>
<td>10YR 2/1</td>
<td>SIL</td>
<td>Crete</td>
<td>NOTES:</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>14"</td>
<td>Mixed</td>
<td>Fill SIL - SICL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>17"</td>
<td>10YR 2/2</td>
<td>SICL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt 1</td>
<td>24"</td>
<td>10YR 3/3</td>
<td>SIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>9"</td>
<td>10YR 3/1</td>
<td>SIL</td>
<td>Fillmore</td>
<td>NOTES: Thin A and E. Site possibly scraped when area was leveled.</td>
</tr>
<tr>
<td>Mixed F</td>
<td>8"</td>
<td>10YR 4/1</td>
<td>SIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bt 1</td>
<td>8+"</td>
<td>10YR 3/1</td>
<td>SIC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thanks!

Credit to this presentation goes to professors Retired Dr. Mark Kuzila and the late Dr. C.W. Zanner.
Chuck Markley and Rebecca Hodges Resource Soil Scientist in Nebraska
The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers. If you believe you experienced discrimination when obtaining services from USDA, participating in a USDA program, or participating in a program that receives financial assistance from USDA, you may file a complaint with USDA. Information about how to file a discrimination complaint is available from the Office of the Assistant Secretary for Civil Rights.

USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex (including gender identity and expression), marital status, familial status, parental status, religion, sexual orientation, political beliefs, genetic information, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.)